Produkt zum Begriff Hypotenuse:
-
Wonday Geometriedreieck, Hypotenuse: 240 mm
aus Kunststoff, mit abnehmbarem Griff, 4 Funktionen: Winkel in Millimetereinteilung, symmetrische Striche, parallele Striche und Winkelmesser, in Blisterverpackung (FTT700362)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 240 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 245Verpackung Höhe in mm: 15Verpackung Tiefe in mm: 245Versandgewicht in Gramm: 42Geometriedreieck, mit abnehmbarem Griff•, 4 Funktionen: Winkel mit Millimetereinteilung, symmetrische Striche, parallele Linien und Winkelmesser •, in Blisterverpackung
Preis: 1.68 € | Versand*: 5.95 € -
WEDO Geometriedreieck Standard, Hypotenuse 160 mm
transparent, aus Kunststoff, mit Facetten, Maßskala gelb hinterlegt (52.5)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 105Verpackung Höhe in mm: 30Verpackung Tiefe in mm: 230Versandgewicht in Gramm: 210Geometriedreieck Standard•, mit Facetten •, Maßskala gelb hinterlegt •, in Kunststoffetui mit Eurolochung
Preis: 1.26 € | Versand*: 5.95 € -
Maped Geometriedreieck Technic, Hypotenuse: 260 mm
aus Kunststoff, mit abnehmbarem Griff, 4 Funktionen: Winkel in Millimetereinteilung, symmetrische Striche, parallele Striche und Winkelmesser, in Blisterverpackung (M028700)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 260 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 240Verpackung Höhe in mm: 230Verpackung Tiefe in mm: 40Versandgewicht in Gramm: 600Geometriedreieck Technic, mit abnehmbarem Griff•, 4 Funktionen: Winkel mit Millimetereinteilung, symmetrische Striche, parallele Linien und Winkelmesser •, in Blisterverpackung
Preis: 2.45 € | Versand*: 5.95 € -
WESTCOTT Geometriedreieck, Hypotenuse: 140 mm, transparent
aus Kunststoff, schwarz geprägte mm-Einteilung, gegenläufige Bezifferung gelb hinterlegt, mit Tuschnoppen, im Polybeutel (E-10130 BP)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 140 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 85Verpackung Höhe in mm: 2Verpackung Tiefe in mm: 175Versandgewicht in Gramm: 11Geometriedreieck•, aus Kunststoff•, schwarz geprägte mm-Einteilung•, mit gegenläufiger Bezifferung, gelb hinterlegt•, mit TuschnoppenFür wen geeignet:- Schüler, Lehrer, Kinder, Jugendliche- Büromitarbeiter, technische Zeichner
Preis: 1.06 € | Versand*: 5.95 €
-
Die Ankathete durch die Hypotenuse ist das Verhältnis der Länge der Ankathete zur Länge der Hypotenuse in einem rechtwinkligen Dreieck.
Was ist der Begriff "Die Ankathete durch die Hypotenuse ist das Verhältnis der Länge der Ankathete zur Länge der Hypotenuse in einem rechtwinkligen Dreieck"?
-
Wie berechnet man die Länge der Hypotenuse?
Die Länge der Hypotenuse eines rechtwinkligen Dreiecks kann mithilfe des Satzes des Pythagoras berechnet werden. Dieser besagt, dass die Quadratsumme der beiden Katheten eines rechtwinkligen Dreiecks gleich dem Quadrat der Hypotenuse ist. Um die Länge der Hypotenuse zu berechnen, muss man also die Wurzel aus der Summe der Quadrate der beiden Katheten ziehen. Dies kann mit Hilfe eines Taschenrechners oder einer mathematischen Formel durchgeführt werden. Alternativ kann man auch den Sinus, Kosinus oder Tangens des rechten Winkels verwenden, um die Länge der Hypotenuse zu berechnen.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Welche Bedeutung hat die Hypotenuse in der Geometrie?
Die Länge der Hypotenuse in einem rechtwinkligen Dreieck kann mit dem Satz des Pythagoras berechnet werden: a^2 + b^2 = c^2. Die Hypotenuse ist die längste Seite eines rechtwinkligen Dreiecks und liegt gegenüber dem rechten Winkel. In der Geometrie ist die Hypotenuse daher eine wichtige Seite, um die Beziehungen zwischen den Seitenlängen eines Dreiecks zu bestimmen.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Warum ist die Hypotenuse die längste Seite in einem rechtwinkligen Dreieck?
Die Länge der Hypotenuse kann mit dem Satz des Pythagoras berechnet werden: a² + b² = c², wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Hypotenuse ist die längste Seite, da sie die direkte Verbindung zwischen den beiden anderen Seiten bildet und somit die längste Strecke darstellt. Dies ergibt sich aus der Eigenschaft des rechtwinkligen Dreiecks, dass die Hypotenuse immer länger ist als jede der beiden Katheten.
Ähnliche Suchbegriffe für Hypotenuse:
-
WEDO Geometriedreieck, flexibel, Hypotenuse 160 mm
transparent, aus flexiblem, bruchsichern Kunststoff, mit Facetten, Maßskala gelb hinterlegt (52 553)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 230Verpackung Höhe in mm: 105Verpackung Tiefe in mm: 30Versandgewicht in Gramm: 200Geometriedreieck, flexibel•, aus flexiblem, bruchsicherem Kunststoff•, mit Facetten •, Maßskala farblich hinterlegt •, in Kunststoff SB-fähig mit Eurolochung verpackt
Preis: 1.39 € | Versand*: 5.95 € -
Maped Geometriedreieck Technic, Hypotenuse: 160 mm
4 in 1: Winkel mit Millimeterteilung, Parallele Striche, symmetrische Striche, Winkelmesser, aus Kunststoff, transparent, in Blisterverpackung (M277737)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 215Verpackung Höhe in mm: 10Verpackung Tiefe in mm: 105Versandgewicht in Gramm: 25Geometriedreieck Technic•, 4 Funktionen: Winkel mit Milimetereinteilung, symmetrische Striche, parallele Linien und Winkelmesser •, in Blistverpackung
Preis: 1.69 € | Versand*: 5.95 € -
WESTCOTT Geometriedreieck, Hypotenuse: 140 mm, flexibel
transparent, flexibel und bruchsicher, aus Kunststoff, schwarz geprägte mm-Einteilung, gegenläufige Bezifferung gelb hinterlegt, mit Tuschenoppen, Farbe: transparent, im Polybeutel (E-10132 BP)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 140 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 85Verpackung Höhe in mm: 2Verpackung Tiefe in mm: 170Versandgewicht in Gramm: 14Geometriedreieck, flexibel•, aus Kunststoff, besonders flexibel und bruchsicher•, schwarz geprägte mm-Einteilung•, mit gegenläufiger Bezifferung, gelb hinterlegt•, mit TuschnoppenFür wen geeignet:- Schüler, Lehrer, Kinder, Jugendliche- Büromitarbeiter, technische Zeichner
Preis: 1.17 € | Versand*: 5.95 € -
WEDO Geometriedreieck, Hypotenuse 160 mm, abnehmbarer Griff
aus Kunststoff, transparent, mit Facetten, Maßskala gelb hinterlegt (52 6)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 230Verpackung Höhe in mm: 110Verpackung Tiefe in mm: 30Versandgewicht in Gramm: 200Geometriedreieck, mit abnehmbaren Griffen•, mit Facetten •, Maßskala gelb hinterlegt •, in Kunststoffetui mit Eurolochung
Preis: 1.58 € | Versand*: 5.95 €
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Was ist die Beziehung zwischen den Seiten eines rechtwinkligen Dreiecks und der Hypotenuse?
Die Länge der Hypotenuse kann mit dem Satz des Pythagoras berechnet werden: a² + b² = c², wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Hypotenuse ist die längste Seite in einem rechtwinkligen Dreieck und steht immer dem rechten Winkel gegenüber. Die Beziehung zwischen den Seiten eines rechtwinkligen Dreiecks und der Hypotenuse wird durch den Satz des Pythagoras beschrieben, der besagt, dass die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse ist.
-
Was ergibt sich, wenn man die Gegenkathete durch die Hypotenuse dividiert?
Wenn man die Gegenkathete durch die Hypotenuse dividiert, erhält man den Sinus des Winkels, der der Gegenkathete gegenüberliegt. Der Sinus ist ein trigonometrisches Verhältnis, das in einem rechtwinkligen Dreieck definiert ist und den Verhältniswert der Gegenkathete zur Hypotenuse angibt.
-
Was ist die mathematische Formel zur Berechnung der Hypotenuse in einem rechtwinkligen Dreieck?
Die mathematische Formel zur Berechnung der Hypotenuse in einem rechtwinkligen Dreieck lautet: a^2 + b^2 = c^2. Hierbei sind a und b die Längen der Katheten und c die Länge der Hypotenuse. Um die Hypotenuse zu berechnen, muss man die Wurzel aus der Summe der Quadrate der Katheten ziehen.
-
Muss die Hypotenuse bei einem rechtwinkligen Dreieck immer die längste Seite sein?
Ja, die Hypotenuse ist immer die längste Seite in einem rechtwinkligen Dreieck. Dies liegt daran, dass sie die Seite ist, die dem rechten Winkel gegenüberliegt und somit den größten Abstand zu den anderen beiden Seiten hat.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.